If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+8x-22=0
a = 2; b = 8; c = -22;
Δ = b2-4ac
Δ = 82-4·2·(-22)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{15}}{2*2}=\frac{-8-4\sqrt{15}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{15}}{2*2}=\frac{-8+4\sqrt{15}}{4} $
| (x)(x+2)=80 | | 5x+80=80 | | 3.5z=-24.5 | | 2y=8-7 | | 0.5x-71=90 | | 9-4g=3g | | 10x-8=78 | | 75+75+2x=30 | | |10x-8|=78 | | 75+75@x=30 | | -7/2y=-49 | | x+141+130=180 | | 2p-11=23 | | 28(2)+b(2)=50(2) | | p-26=15 | | 81=t-55 | | 91+91+2x=360 | | 2x+3x-12=108 | | 90+90+2x=360 | | 13-6x=4x^2-22 | | x+137+50=180 | | -6-4(1+5z)=-15 | | -728=8(-12x+29) | | 20+4x=30+2x | | 23+m=87 | | 1/3(2x+5)-3=1/2(x+2) | | −3y=−18 | | x+119+110=180 | | 80+80+2x=360 | | 5(x+4)=7x-14 | | 1320=12(-15x+5) | | 3x+4=4x-45 |